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Abstract

The prbpagation of a high cufrent relativistic
beam in a cold magnetized plasma is investigated using a
model developed by Hammer and Rostoker for the unmagnetized
case. In this model, the beam electrons are assumed to
be undeflected from their zero order orbits and the
fields associated with the beam are switched on at time
t=0. The return current induced in the plasma is cal-
culated as a function of beam and plasma parameters. It
is demonstrated that the return current does not extend
indefinitely but dies away inversely as the distance from
the head of the beam with a characteristic length Ln =
v, Taz/lEZ, where Vo and a are the beam velocity and
radius, T is a phenomenological momentum relaxation time
fpr the plasma electrons, A ‘

E

frequency of the plasma electrons. When the beam is in-

= c/wp and w is the plasma

jected either parallel or perpendicular to a static
magnetic field By it is found to be magnetically neutral-
ized by a return current over a length of order Lr.1 if

2 2 2 2 ,
a /[RE (1 + Q /wp )] >> 1, where Q = eBO/mOc,



1. INTRODUCTION

The last few years have seen a tremendous increase in
interest in relativistic electron beams with several experi-
mental groups propagaﬁing high current relativiétic-beamslné.u
However, early wofkers in this field predicted that electro-
statically neutralized beams with uniform current density‘
would not propagate with total current greater than 17;000 By
amperes,6'7 where £ is the particle stream veiocity aiv '
vided by the velocity of light, and y = (1-g%) "%, This
current limit is due to the self-magnetic field of the
 beam which for large current becomes strong encugh to turn
the beam particles around. One way of overcoming this limit
is to inject the beam into a plasma. Under éertain con-
ditions a return current will be induced to flow in the
.plasma within the beam. The magnetic field is then reduced
and in some cases almost completely canceled. Hamme? and

2 have recently developed

Rostokef,8 and Cox and Bennett
models for qaléulating the properties of the induced plasma
current. In this paper we will extend the model developed
by Hammer and Rostoker8 to the case of injection of‘a mag-
netized plasma.

In this model, a cylindrical relativistic beam of

uniform density is "switched on" at t=0 in the presence of

a fully ionized plasma. The fields generated by this beam



are computed as if the test particles composing the beam
afe unperturbed from their zero order motion. The response
of the plasma to the beam is calculated by means of a plasma
conductivity tensor which is developed in the conventional
manner from Maxwell's eguations and the appropriate dynam-
ical eguations for the plasma. The current induced in the
plasma by the time changing fields associated with the
head of the beam is computed as a function of the beam aﬁd
' plésma parameters. It is possible to compute the effect on
the beam particles of the fields generated by the beam and
thereby obtain a better approximation to the behavior of

the beam and. plasma. However, in this paper we shall con-
fine our calculations to the first step in this-perturbation
expansion. |

In Sec. II we develop the general expression for the

induced plasma current for a beam injected at an arbitrary
angle into a uniformly magnetized plasma. In Sec.-III |
.we briefly discuss the zero magnetic field case treated by
Hammer and Rostoker? For this one finds thé.following
picture for the plasma current. At the head of the beam
(see Fig. 1) there is a region of plasma oscillations-
which decay away with a scale length of O(VOT), where Vo
is the beam velocity and T is a phenomenological momentum
relaxation time for the plasma electrons. If az/)\E2 >> 1,

where a is the beam radius, AE = c/wp, the -electromagnetic



skin depth, and wp is the plasma frequency of the back-
ground plasma, then a region exists where the béam current
is neutralized. The length of the neutralized region, Ln’
is of O(votaz/lEz) and the net current is approximately
AE/a times the beam current. The length over which the
beam is current neutralized, can be calculated by several

elementary methods but the simplest picture is to consider

the time required for the magnetic field from the plasma

current to diffuse away.lo The diffusion of the magnetic
field is governed by

Anc 3B _ 2. -

—zae VP '

where the conductivity o = mpzr/4ﬂ. If we approximate

VZB by B/az, we see that B will decay exponentially with

a time constant T given by
T = Tazwpz/c2 .

This time then gives the characteristic diffusion length,

2

L =v.T=vw raz/AE . In the detailed calculations given

n o o
in Sec. III it turns out that although the characteristic
time is given by (1.2) the decay is not exponential but’

algebraic. Thus, once the plasma current and magnetic

(1.1)

(1.2)

field diffuse away, the beam will no longer be magnetically

neutralized and the beam magnetic field would exert a



self pinching force. One would not expect to find beams
with total length much greater than Ln if the beam current
is greater than the Alfven-Lawson limit.%77

In Sec. IV we consider injection of the beam parallel
to the magnetic field for two sets of beam-plasma parameters;
(&) ¢ ~ 1, vy > 1, and (b) & >> 1, Y ~ 1, where ¢ = Q”/wp,
and Q. = eB“/moc. In case {a) the magnetic field has little
effect and the properties of the return current are quali- |
tatively the same as for the zero magnetic fieldféase
discussed in Sec. III. However, in case (b) we show that
the magnetic field does play an important role and if we
take the limit -« we can immediately show thaf no refurn
current will flow. Physically, the lack of return current
comes about for the following reason. Unlike the case

<1,

~

where the magnetic field is zero or weak, i.e. 0 & z
there are no nonadiabatic processes available (except weak
collisions) to the plasma which will allow the excess elec-
trons to escape in the radial direction and neﬁtralize the
beam charge density. The only direétion available for the
excess electrons to escape is along the field iines and out
the head of the beam. These electrons then pile up in front
of the beam creating a large potential which prevents the
plasma electrons from being accelerated backwards to pro-
vide a return current for the beam. We show that the in-

finite magnetic field case is a true limiting case and



that the appropriate criterion for current neutralization

2) >> 1. If this ecriterion is met, a

is now az/lEztl +
return current will be induced and the lehgth of the cur-
rent neutralization will be the same as before.

In Sec. V we consider injection of the beam perpen-
dicular to the magnetic field for the case where £ “.1 and
y >> 1, where §{ = QL/wp, and Qg = eB¢/mOc. If the beam
is to be current neutralized the return current-ﬁust be
induced to flow across the magnetic field. The mechénism
which aliows the electrons to flow across the magnetic
field lines is provided by a space charge electric field
which builds up when the beam expels excess plasma electrons
in the process of becoming charge neutral,. This electric
field has just the proper character to cancel the magnetic
force on the return current electrons.ll The electrons
then move in a force free region and the return curren£
flows until it diffuses away by collisions. The criterion
for neutralization is given by.az/AEz(l + 52) >> 1, The
curreht neutralization length is the same as before. " In
summary, table I gives the conditions for beam current
neutralization for the three cases discusse&, i.e. injection'
0f the beam into an_unmagnetizeé plasma, injection para-

llel to a magnetic field, .and injection perpendicular to a

magnetic field.



In order to obtain some feeling for the numeric values
of the parameters in table I we will consider conditions
which are representative of the relativistic electron beam
experiments at Cornell University.l Typically, we have
beams with current of the order of 100-kA and radius of 5 cm.
The beam is injected into air at a pressure‘of-about 1l torr, .
and has a pulse length of 50-nsec. The background plasma
density quiékly rises to 103 em™? or above and thé beams
are observed to be current neutralized. Under these con-
ditions a/)\E is approxiamtely 30 and we expect the beam to
be current neutralized. The scale length for the damping
of the plasma oscillations, VT is 100 c¢m or léss and.is
sﬁall compared to the total beam length (15m). The neutral-
ization iength L, calculated from classical twp particle -
collisions is about 103m, which means that the beam will be
neutralized over its entire length. It is poséible for the.
effective collision frequency 1/t to bé considerably greater
than the classical value because of turbulence génerated
in the background plasma by collective interaction of,thé
beam-plasma system. In this case, Ln would be-considerably
reduced.

Recently, experiments that involve the injection of
beams parallel to a magnetic guide field haﬁé begun.12 The

effect of the magnetic field on the current neutralization would

‘be noticeable if a/hpt ~ 1; with a/dg . 30, and ¢ ~ 30, the



magnetic field must be about 300-kg. To keep a/kE ~ 10 and
still see some effect from a 10-kg guide field one needs a

“3 and a beam radius of 17 cm.

plasma density of 10ll cm
These conditions just represent the threshold of the effect
and guide fields 5 to 10 times the above strength would be
needed before beam neutralization was significantly af-
fected. HoWever, even though the parallel guide field may
be strong enough to prevent current neutralization the
propagation of the beam may not be affected since the guide
field will most likely now be much stronger than the self
magnetic field of the beam. If this is true the guide
field will prevent the beam particles from being turned-
around by the self field and the beam will propagate.12
At the Astron facility of the Lawrence Radiation
Laboratory, relativistic electron beams are used to create
an electron E~layer in a magnetic mirror configuration;l3
To a first approximation we may treat the injection into
this machine as injection of an electron beam across a
magnetic field. For purpcses of discussion, we will con-
sider the injection of an Astron beam under the conditions
of steady state E-layer production., That ié, an E-layer
has been formed by several earlier pulses and the back-
ground neutral Hydrogen (say at a pressure of 10”3 torr)

is now fully ionized. The electron beam, with energy

around 4-MeV, radius of 3 cm, current of,l-ka, and pulse
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length of 300-nsec is then injected into the magnetic
mirror: a/A; is again about 30 and & = Qi/mp ~ 10—2. Thus
we see that the magnetic field has little effect on the
beam which will be fully current neutralized upon injection. .
Once the head of the beam has wound its way into the E-layer
and is reflected at the far mirror, it will lose its
identity and will no longer induce a return'current. The
neutralization length is 300 m and therefore it will take

about 107° sec before the beam will contribute its full

magnetic field to the E-layer.
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IT. MATHEMATICAL FORMULATION

In this section we will outline the mathematical
formalism used in calculating the response of the plasma
to the injectéd beam of electrons. The beam is injected
into a cold mégnetized plasma assumed to be homogeneous
and infinite in extent. The injection process is treated
as an initial value problem where the beam is "switched
" at time t=0 in a quiescent plasma. It becomes con-
venient to 4o the calculation in the beam reét frame
because we are solving an initiél value problem. it is
in this frame of reference that the initial conditions
have their simplest form, i.e., the plasma.is assumed
to be unperturbed at t=0 when the beam is switched on.
and the only fields present are the electroétatic fields
associated with the unneutralized charge density of the
beam. |

We perform a Fourier transform on Maxwell's equations

in space and a Laplace transform in time and. get

ik x E(s,k) =-32 B(s,k),
and

. 4w S ' 1

itk x *B“-(s_’*k') = —= 1(s,k) + = E(syk) - = E(t=0,k),
where

[e¢] ~+o0

E @,k = f d8f d3;_< E(x,k) exp (-st-ik-x),

o o 0O

(2.1)

(2.2)

(2;3)



12

. ete. Combining Egs. (2.1) and (2.2) we obtain

k x k< B{s,k) + 35 E(s,k) + 22 o (s,k) B(s,k) =
la) c ‘ .
=5 E(t=0,k) . (2.4)

We have written j(s,k) as a tensor product between a con-
ductivity tensor d(s,X) and the electric field §js,£).

If we assume that the thermal velocity of the plasma

electrons can be neglected, in comparison with the beam

velocity, then the equation for the electron fluid momen-

tum is

1
T

Q4
#

where p(x,t) = m_ v(x,t) vi{x,t), v(x,t) = {l‘V&é,t)2/C2}“%r
and T 1s a phenomenological electron momentum relaxation
time. Ton motion is neglected since the ions, due to their
large’ mass, respond much more slowly than the electrons. In
the beam rest frame the plasma is streaming in the negative
z directién with speed v . Perturbations are assumed to be

of order Nb/Nd << 1, where Nb and NO are the beam and back-

. ground plasma densities. This restriction ensures that the

perturbed velocity of the plasma electrons remains small

with respect to the beam velocity Ve Linearizing

plx,t), (2.5}
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Eg. (2.5) about v, and taking the Fourier-Laplace trans-

form of this equation (2.5) we get

- m 2.,
Vo (8~ik _v.) IZY_LI(S;_}(C) + Yoyﬂl(s,}c)]

L

S T _ .0 4 (13 T
o [E (s,k) - &= &, X B'(s,k) + = v'(s,k) .X_BO:|

—=

- ?Q[Vi”(sr,]ﬁ) + 2 ()}

Superscripts refer to perturbed guantities; Yk?(S,K) is
the perturbed velocity normal to the z axis and v;%(s,k)
is the perturbed velocity parallel to the z axis, and
Yo = (l-Voz/cz)_%. All gquantities are measured in the

beam rest frame unless noted otherwise.

Egquation (2.6) is easily solved for_the perturbed

velocity v "(s,k). Using the equation of the conservation

of number density, the perturbed current is then given by

ieN kv (s, k)
8 .

s-1ik v z
Z 0

jV(U (S ’}'{) = _eNOV(” ( s '}?) —

It is now convenient to change the basis vectors

a a a & & A
r r 4, to a new set 17 85/ 84 where

(2.6)

(2.7)
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and mp = 4wNOe /Yom
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The current is now expressed as (dropping the superscripts)

. N O , ' . '
ek = T30 S(s.k) B (s, k) | (2.8)

where the elements of the tensor g(s,k) are given in

Appendix A. Putting Eg. (2.8) into Eq. (2;4) we get

¥(s,k)-Els,k) = &5 E(t=0,k), | (2.9)
- C

. where the operator

¥(s,k) = {~k x k x +[s-2/c2 + (wpz/c2>§(s,;g;)] ,

o
The electric field in the plasma can now be expressed

in terms of the field at t=0,

E(s,k) = &5 ¥(s, k)"

rov

“E(t=0,k). (2.10).

Q

The operator X(s,g)_l is given in Appendix B in terms of
the cofactor matrix, R(s,k), and the determinant of ¥(s,k).

From'Eqs. (2.8) and 2.10) the current induced in the plasma
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can also be given in terms of E(t=0,k),

w’ 0(s,k) “E(£=0,k)
| ¥ (5.0 |

(2.11)

whére Q(s,k) = ?(stk)°R(s>k). See appendix C for the
elements of Q(s,k). From Eg. (2.11) and the equation
for charge conservation we can calculate.all éomponents
of the plasma current and the charge denéity.

Because we are interested in the return current in
the laboratory frame for t+« we must transform Eqg. (2.11)
by a Lorentz transformation to the laboratory frame, and
obtain thé time asymptotic limit from the prescription
F(t+m)=lé$05F(s). We expect the plasma to reach this
asymptotic value in a few plasma periods Qp_l. The ex-
.pression for the return current, which is the z-component
of the plasma current, is.then (primes denote gquan=-

tities measured in the laboratory frame)

‘ o ‘ ski ) . ) ,
_ _ j, ' (tre,k) = éiﬁ YO[E__ jz(s,k)-—.lkvojl(s,k)} . (2.12)

Using Eg. (2.11) to evaluate jl(S,E) and jg(SrE) we have

w 2 Py, (k) sk

. ” — 1 s P . ) s
Iz (tve k) . %i% e c2 Iy(snk)l kzv QZl(S'k) lQll(S'k)’

O

(2.13) .
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where pb(g) is the Fourier transform of the charge density
of the beam. For a uniform cylindrical beam of radius a,’

extending from z = 0 to 2z = -« the charge density is

—eNy, ria; ~eLz £ 0 _ _
py, () = o (2.14)
0 , elsewhere '
and the Fourier transform of the charge density is given

by,

O

: J, (k, a) ~ ~ |
pb(k) = ~2waea ~mmET——-~/P dz exp (ikzz). (2.15)

—CC

The z-component of the current in the laboratory frame

is furnished by the inverse Fourier transform

2T

§ t(trw,r,0,32) = i dk x ax, [ ag
zZ (2#)3 z ‘ % Pt
’ —0 (o) o] _

. jz'(t+m,k) exp[}kzz + ik, r cQs(ﬁ—e)] ; (2.16)

It should.be noted that even though this is the expression
for the current in the laboratory frame, the coordinates
are still measured in the beam frame. Ahpther quantity

of interest is the perturbed charge density. In the.

laboratory frame we have
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svok_L . |
p' (t»=,k) = lim Yo -ikjl(s,k) + j (Srkﬂ

J <
5+0 x0T
(2.17)
_ wpz Py (k)
T ek Yo F TEGEH
isvokL )
_ Qll(s’}?) s QZI(S:]’C.) . (2.18)
c’k : _
Substituting Egs. ({2.13) and (2.15) into Eg. (2.16),
we see that the expreséion for the plasma current has
the following form
) mpz dk
Iy (Breex) = —[evoanJ v 2y 2 a J[. T J1 k2l
Yo Yo o '
2m
:}r %%‘exp [ix, r cos (g-9)]
o 23
o oo ‘ I (kz"ki) '
f dz f dkZ kz . exp [}kz(z z)] - (2.19)
-0 -—C I (kz—k) :
j=1 !

The zeros of the two polynomials depend, in general, on
ki and # as well as the plasma parameters Wy T and Vi
% is the degree of the polynomial, £ = 5 er §o = 0

and & = 8 for B, # 0. Hereafter, the plasma current and



18

charge density will be normalized to the zeroc order beam

current and charge density and all lengths will be normal-

B
do the kz integration by contour integratidn around the

ized to X E_d/wp, the electromagnetic skin depth. We .

zeros of the polynomial in the &enoﬁinator of Eq. (2;19).
The z integration is trivial. We then see_fhat for z > 0
the plasma curreht depends only on the residues of the'kz'
pPoles which are in the upper half plane (UHP), and for

~z < 0 the current depends only on the residues in the
lower half plane (LHP). 8ince we are interested iﬁ thé
plasma current induced to flow within the beam, i.e. fof
z < 0, we will not considar the expression for the current
for z > 0 any further. In most cases the cdrrent‘aheéd- |
of the beam is 0{exp {~z/kE)} and is approximately zero
anyway. The expression for the normalized-plasma,currenﬁ,

after performing the k, and 7 integration is now

. o 2m
0 (o _ A dk :
3p' (= R,0,20) = 25 f Q-TT-Jl(KA)f ag
- ° | ° (2.20)
-3 _
I Ogeng)
+  exp [iKRCOS(ﬂ“e)] x :E: 111 exp(‘iXkZ)
| |3 m(—xs) |
LEP j=1 K73
j#k

where o %-BOYO,. kK = kA

pe X = szE’ A=a/\.,, R= r/hE,



19

and Z = -z/kE, where for convenience 2 is the distance
measured from the head of the beam. The sum is over the
residues in ﬁhe LEP.

From the general structure of Eg. (2.20) can we de-
termine if a "reﬁurn currentﬁ is induced to flow in the
plasma? By a "return current" we mean a quasi-static
- current induced within the beam that exist for a time'
long compared to the characteristic decay time of the
plasma oscillations at the head of the beam. Since the-_
decay time of the oscillations is T then the plasma osci-
- 1lations exist-ovar a region at the head of the beam |
2 = VOT/AE., In thg beam coordinatés, the return current
is quasi-steady and the decay length is long compared to
the decay lengﬁh.for the plasma-oscillations at the head
of the beam; Inspection of the roots of the polynomial
shows that the damping aséociated with the dscillating
terms is always aé great or greater than v/2, v '= AE/VOT.
Thus the plasma ospillationé terms are always O[exp(—Zv/z)]..
Therefore, we conciude.that any of.the poleé_with a damping
greater than v/2 cannot contribute.to the feturn current.
If there are no poles with a damping less than v/2, then no
return current ﬁill be induced. Only poles with a damping
less than v/2 can give rise to a return current. To de-
‘termine this current we only need to calculate the residues.
from these poles. Detailed examination of these roots will
be undertaken for the three special cases diécussed in the -

following sections.
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III. ZERO MAGNETIC FIELD

In order to understand in what sense the return

current can be considered a quasi-static current we

will first treat the case of zero magnetic field, i.e.

set B
Ytk

o}

Rostoker.

C _ A Cdk A
jZ (R,Z>0) = ;’2" f -Z?r“Jl(KA) JO(KR)-/- dz /d)(
O Teto

The zeros

{3.1) are

Xq T
Xg =

We notice

0, and obtain the case'treated-by Hammer and

Equation (2.19) then becomes

oo o0

-0

exp [-i(2+2)x] — X[%(x+lv)+1]_. ;
. EX +K )(X+1U)+%][X(X+1V)—l/a ]
| ' (3.1)
of the deneminator of the integrand in Eq.

approximately given by

F1(k4H1)E - ihv/ (k241)

ST - v/ (e241)

+r/00 - ikv
-1/a - i%ﬁ
-iUKz/(K2+l)

that only X will contribute to the return

current since its damping is less than v/2 as discussed

in the previous section. X3 and X4 give rise to expo-

| nentially damped oscillations which when transferred

to the laboratory frame are exactly. at the plasma fre-
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guency ; Xé gives rise to a nonoscillatory term which
decays with a very rapidly exponential character. X1

is in the UHP and so does not contribute. ~In Hammer

and Rostoker's calculation X is-put equal to:zero whidh
gives a return current that does not decay away. On
calculating the residue for Xgr the expressioﬁ for the

return current is

o ; JO(KR)Jl(KA) - 5 2 | _ .
j_"(R,2<0) = -a | dk exp|-vZc™/(x"+1)} - . (3.2Y
Z 2.
(™ +1)
o
We approximate the integral in the following way.
If one assumes there is a range of Z where the expo-

nential in Eg. (3.2) is approximately equal to unity, the

integral can then be done and the current is -

-1 + AIO(R)Kl(A),_ R<A
jz (R,Zl<Z<Z2) = , (3,3)‘
—_AIl(A)KO(R)f R>A

where the I's and K's are modified Bessel functions. The
ratio of the net current within the beam to the beam curreht

is
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A
= 1 ‘ : -
Inet/Ibeam = ;X§ dr 2WRAIO(R)K1(A) = 2Il(A)Kl(A)
‘ o
{3.4)
From Egq. (3.4) we conclude that for effective neutrali-
lzatlon, i.e. Inet/Ibeam << 1, we must have
A=aliy > 1 . - - (3.5)
In this limit
I /1 ~ = (3.6)
net’ "heam = A )

This is the result obtained by Hammer and Rostoker;
Returning to Eg. (3.2), we are interested in the 7
dependence of the curreﬁt for %>1/v, i.e.'the fegibn
after the plasma oscillations.have decayed away. Thus,
the only impoftant part of the integration lies ih the
range 0<x<1l since the intégral in the range;l§K<¥ is
0(exp -Zv/2). For effective heutralization A>>1, which
makes Jl(KA) oscillate quite rapidly for «>1/a, and here
little error will be intrdduced if we negleét K2 with
respect to unity in Eqg. (3.2). We.let the range of the
integratien go to = because Jl(KA)'oscillates quite 

rapidly and the exponential will be quite strongly damped:

~for zZ>1/v. The return current is then approximately given
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by -
- ~ | o2
i, (R,2> 1/Vv) Ah/rch<Jb(KR)Jl(KA) eXp {~VZK )_ (3:7)
5 :
This integral still cannot be done in closed form except
for the special case of R = 0. From Eg. (3.3), however,
we expect:the current to be approximately uniform across.
the cross section of the beam since for A>>l, the modi-
fied Bessel functions are exponentially small except at
R=A, For R~ 0, Egq. (3.7) becomes
< 2 . 2 :
3, (R,2>1/v) = =~2exp (-A“/8v%) sinh(a /8vZY
= 2 - '
= - [l -exp(~A /4vzd . _ (3.8)

We now see that the current decays away guite slowly"

with a séale length Ln ~ O(Az/v). Note also that for
large 2 the current deéays'as Z—l. We, therefore, con%
dluae thét there is a region where the return cufrent is
in a quasi-static state. The scale.lenéth‘df this régioﬁl
is much lonéer than the scale length of the damping of

the plasma'oécillations, and prpvides a reéion of current
~neutralization which is necessary for ultfahigh cUrrept

beams to propagate.
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~Iv. INJECTION PARALLEL TO MAGNETIC FIELD
In this section we will consider the injection of the
beam parallel to the static magnetic field; Equation (2.19)

then becomes

5" (R, 2) f
O

ot

o (KR) T (kA) fd;"z'fdx eXP.[-‘.i(Z‘FZ'),X]

—CO -

NIQ

il

X "(XZ + kKT){x + iv) + X] [X (x + iv) + l] - C—2~ ){2 ()(2 + K._)
- o

=
>
bo
+
~
-
4

ivy + ]2[)(()( + 1\)) - l/oa]—- E~2— X(X_z + Kz):

ot

: [(xz' + k) (x o+ i) - x/ocz] ‘ o '_ \ S (4.1

where ¢ = Q“/wp, and Q”= eBOZ/moc. The.polynomial in the
denominator of the_integrand is of the eighth degree and
its zeros, in general, are not easily found. However,‘we
will consider two cases where they can~be'¢alcuiated using
an expansion in a small parametér,.a:(a) L~1, u_lahé;'and.
_ v ~el and-(b)_fﬁr Q_;;E, a~1l, and v~52._ We\ﬁill-first
éonsider case (a) . Keeping only lowest ordér £eal ané
imaginary térms in each zero we have, fqrrthe-firsthase,

R L
Xy = X, = +i(k? + 1)°

=y, = -if{x? ¥ 1)
X3 = %y

Xg =+ = [1 - szz(Kz)] : iv[% + c2f3(r<2)] |

!
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5 2]%}

1-2 (k*-1) /2%

|

1-2{k —l)/c K ]

Xg = = é [} + czfz(mz)] - lv[% +z 263 (x )]
£(x2) 2. 2
X7 = - iv 55 5 11 + 78 (k™) {1+
1+ 77 (¢™) i ‘
. £c?y 2., 2.4,
Xg = — iv 57 1+ %r°E(¢®)qk -
1+ TET (T
L.
where f(K2) = Kz/(Kz + 1).

We now see that only'x7 ahd

Xg are weakly damped and by virtue of the argument pre-

sented in Section Ii,

current.

they only contribute to the return

the expression for the return current is

Calculating the residues from theSe'poléé,

(4.2)

- 3, (kRYT (¥A)
j_'(R,Z ——A.de
? ’ D1+ 222
(X9 = Xg) exp (=ix,2) - (xg ~ xg)"exp (-ixg2) |
- (X7 - XS) ' -
" where Xg = —ivf(K2). If we put ¢ = 0 in Eq. (4.2), it

will reduce to the expression for no magnetic field,qu.

(3.22).

Again we will assume there is a range of Z

where the exponentials are approximately egual to unity,

Ci.e. we neglect altogether the damping introduced by

X and Xg*

In the following paragraph we:will explicitly

determine the effect of this damping on the decay of

the return current.

Equation (4.2)

then becomes



j "(R,2) = -A

26

3, (KR)T | (kA)

(

2 4 1)[i +';2f2(K2)]

Io R/(1 + i;)%]Kl[%/(l.+.ig)%]+ c;c. ,,RiAf

(4.3)

by

Ii[l\/(l + i) ]KO [R/(l +-ic)1/2]+ c.c. oA

The ratio of the net current within the beam to the beam

current is

A : '
I
Inet = 1-2 f ar — 27RA . IO[R/(l " ic;)%] . Kl[A/(l + i:)}i] -
beam TA A 2{(1 + izg) _ ' e '
+ c.c = Il[A/(l + iz) ] Kl[A/(l + 1g) ] + Cc.C. . (‘47.4,)_

¥For A »>» 1, the condition for current neutralization, we have

Inet/I

beam

N_:!:.
~ A

|

(1 + i0)% + (1 «-,'iz:)l/z} _ sy
p; _ o

which is approximately the result we obtained without a

magnetic field.

Because the terms in the square brackets in Eg. (4.2)

are complicated functions of K2, the k ihtegration cannot

be done exactly for arbitrary Z. However, what we are
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most intereéted in is the effect of the magnetic fiela Oﬁ
the return curfent, and how this return current is different
from thaﬁ induced.with no magnetic field present.' We have
just séen_that in the current neutralizeq regioﬁ, for.casé
(a), the magnetic field Has only a weak effec£ on the per-
cent neutralizatioﬁ. To estimate thé contribution of the
magné?ic field to X~ andLXB, for qurrent neutralized

beams, we note that the most impdrtant.vélues of % in thé

k integration are in thé.range 0 < kv < 1/A. 1In this‘range
f(Kz) is always less than l/Az. Therefore, for a current

2

neutralized beam l/A2 << 1, £f{x®) << 1, and the terms in

X7 and Xg proportional to the magnetic field, 7, can be

neglected compared to unity. - Equation (4.2) ndw reduces
to
_ : 2 ' JO(KR)Jl(KA)_
i, " (R,2) = -A ‘/dlc 3 =—5—>
' A (k™ + l)l} + £ (x )]

. exp [ﬂMKz/(KZ + lﬂ 7_. _ . (4-6)”
Using the same arguments as in the case for injeétioﬁ into
a unmagnetizéd plasma, we conclude that_thé current decays
away with thé same scale length, Ln ~ A?/ﬁ; aﬁd that for
‘large Z the return current decays ét Z_l.,‘Thus, under this
first set of conditions we see that there is_essentiall?
no differénce in return current for a magnéfiZed or unéf

magnetized plasma.



28

The second ordering we wish to consider is the large

magnetic field case (bj, i.e. cul ~ €. Unfortunately,
there is no uniformly valid perturbation expansion for all
k. with this ordering. At values of K approﬁimately given
by « = o/t; 1l/a, a set of poles, whiéh are a conjugate
pair in the X = ix plane, converge on the real axis (the
imaginary axis in the y plane). For « in the region near K
these two values,ﬁhe éha;acter of the two poles changes
dramatically and the perturbation expansion fails. One
can, of course, calculate the values of these polés at
the singular poihts, and the positions of all the poles
in the ¥y plaﬁe are known for all k. One lacks, however,
a good method for joining the various regionS'of_K space
across the singular points. Because of this'difficuity
only approximate expressions for the return current are
available.

Since.the general expression for the return current
is quite intractable, we wili_first.look at a limiting
case, ¢ * =, where the complexity is chsidérably fef

duced. In this limit Eq. (4.1) becomes

(4.7)
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The polynomial in the denominator of the iﬁtegrand in
BEg. (4.7) is é cubic, and the zeros can be found from
exact, but complicated, expressions. One then finds
that there are no éoles in Eq. (4.7) whose damping is
less than —19/2, and thus there will be no feturn current
in this limit. Physically, the lack of return.current
comes about for the followiﬁg reason. Unliké the case
where the magnetic field is zero or'wéak, i.e. 05 ¢ £1,
there are no nonadiabatic processes available (excepf
weak collisions) to the plasma which will allow the excess
plasma electrons to escape in the radial direction and
neutralize the beam charge density. The only directions
available for the excess electrons to escape is along thé
field lines and out the head of the beam. These electrons
then pile up in front of the beam creating a'large po-
tential which prevents the plasma electrons ahead of the
beam from being accelerated to provide return.current for
the beam. To see that the infinite magnetic field case
is a true limiting”case and not a singular #esult, we will
now return to the discussion of the large, but finite;
'magnetic field ordering.-

Inspection of the zefos of the polynomial in the in-
tegrand of Egq. (4.1) fér the large magnetic field ordering
(See Appendix D for a detailed description of the zeros)

shows that there are six zeros in the LHP,_but'only two
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have a range of K where they are weakly damped. These
two zeros are located at the origin'for k = 0, and move
down the imaginary axis as k increases. At first they

‘move together and for k < o/¢ they are equal to
C ol |
Xl o~ X2 = =1VK .

At the same time there is a zero in the numerator which
exactly cancels one of these poles. As ¢ increases, one
of the poles quickly reaches its asymptotic value and

it can be expressed approximately as Xy ® ~ivK2 2K2

/(z

for all k. The other pole moves down the imaginary axis

(4.8)

+ 1)

monotonically to —ie. It is always approximately-canceled'

by a zero in the numerator. If A > ¢ > 1 then the major'
contribution to the x integration comes in the region
where Xq and Xy are given by Eg. (4.8) and the return
current should be qualitatively the same aé in the weak
magnetic field case. For « S_l/A‘the residue is,approki—
mately equél_to 1l and the approximate expression for the
return current is

1/¢

jzr(R,Z)‘z —A})[' aK JO(KR)Jl(KA) expl}vzgg/€2g2 + l)]

O

+ 0(1/c?) .

(4.9)



For R =0 and A > ¢ > 1, Eq.-(4.9) is approximately

A2 2/A
Jz-(R - O’Z)z'hﬁw kwdk -exp (“vZK2)
D.
A2 T P | ‘
= ~Io% [1 -exp (=4v2/A )] , (4.10)

The return current has the same characteristic decay length

as before, Ln‘v Az/v, and the same Z_l dependence for

- large Z. The return current is 0(1). Yor ¢ > A > 1 we have
: 2 1/g '
jz'(R = 0,72) = - %—[ kd exp[—- ZKz/(i;2|<2 + 1)]
(o}
A2 L . | |
= __;ﬁl)r dy exp |- —z——ii——— . o {4.1D)
4z a (1L + v) _

This integral can be put into the form of an incomplete_

Gamma function and for large 7 the current is

A2

DR = gy ~ - A |1 _ 2 —
3, (R = Q,Z+ ) RV [l 4 exp(-vZ/2¢ J' . (4.12)

We again see that the current has £he characteristic
decay length, L, ~ Az/v, and goes as 7271 for lafge Z.
However, the return current is no longer 0(1) but it is
O(Az/cz). Thus we have only partial current neutrali-~

zation of the beam, and this neutralization goes to zero

as g7, We can now conclude that under the condition,
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Az/cz >> 1, current neutralization will take place. More

~correctly,; we should have A?"/(c2 + 1) »>> 1.
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V. INJECTION PERPENDICULAR TO MAGNETIC FIDLRLD

In this section we will discuss the injection of the
beam perpendicular to the static magnetic field. As in |
the preceding sections we will assume that the unperturbed
orbits of the beam electrons are straight lines. This
means we have assumed the gyro radius of the beam élecﬁrohs
to be large compared to all other transverse lengths, thé

beam radius, gyro radius of the background plasme, etc.

With this restriction in mind, Eg. (2.19) becomes
2T

f _@% 1 (ka) f %%— exp [ikR COS. (ﬁ—-e)]

O

"l

i, (R, 8,2) =

o 4o

. de fd)( exp [=i({ (z + Z)%] ' (5.1}

— GO

_{[X(Xz + 2y (x + iv) + x] [X(X + iv) 4+ 1 + . iEx BO-.l sin ]}

- . 2
. {[ 2 + K ) Y + iv) + ij [}(x + iv) = l/u%] - Ei X(xz + KZ)
a
¥ 2 T.8e%2 .2, 2,2 2.0-1
Y x + iv) + x| + = X© + «7)k” cos”g ;
o _

h = g
where £ Qi/wp, and QJ_ eBOX/mOYOc.
Integration of Eqg. (5.1) for arbitrary plasma conditions
is now more difficult, in general, than the parallel mag-—
netic field case. This is because of the added difficulty

of the coszﬂ term in the denominator of the integrand.
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However, if we consider the case of a highly relativistic’
beam, i.e. o >> 1, then we can neglect the coszﬂ term
since it is 0(1/&4). We will also order £~ 1 and v“~52

Under these restrictions Eg. (5.1) reduces to

o8
3| A

3, (R,6,2) = &5 f o T, (kB f U exp [ikR cos(f - 8)]
o - : :
’ Q [e] : . .

O +co _l _ | : ‘
f dz fdx exp [-_—i(Z +.Z)x] _ (5.2) _

X[%(X + ivy + 1 % iEKBOElSin ﬂ

0+ o0+ e o iv)-1/0?]- €2/ 0 x? + k%)

The zeros in the denominator of Eg. (5.2) can now be
calculated using a perturbation expangion. .Keeping only
the lowest order terms in the real and imaginary pérts of
each zero, they are |

pa 2 Y
Xq = +i (k™ + 1)

Xy = —i(k? + 1)
_ 1 2., 2 g .
X3 = T 51} + E7E (k™) ~iv/2
1 2 2 & '
Xq = = a-[l + £7f (k )] -iv/2
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where again f(Kz) = K2/(K2 + 1), The-residue of XS pro-
vides the only contribution to the return current. The

# integration can be easily done, and after calculating

.the residue for X the expression for the return current

‘becomes
~ J. (xA) [J (¢R) - £k sin 0J (kRﬂ
i, " (R,6,2) = -A de L 5 o ———— E
' A Ak +l)[l+£f(_1<)]
exp [}UZKz/(K2 + 1ﬂ : (5.3)

If we put £ = 0, Eqg. (5.3) will reduce to the expression

for the current with no magnetic field, Eqg. (3.22).' Fof

finite £ we see that the return‘current 18 no longer
azimuthally symmetric buﬁ, to this order in the expan-
sion, has a component which is proportional to sin 6.

We show later'that this COmponeﬁt is néthing more than the
perturbed charge density streaminé by withsthe beam velocity.
| ~Again we Will.assume there is a range of A whére the.-
expdneﬁtial-is approximately equalrto 1. _Equétion (5.3)

then becomes |

7 ~ Ji(KA).{JO(KR) -£k SinleJl(KRﬂ..
-A di 5 3 5 ]
(k™. + 1) [i + E°F (K ﬂ

o}

'—l_.+ Jy(R) + J,(R) sin 8, R <A : : _
2| | | | ., (5.4)
+ J4(R) + J,(R) sin 6 R >A- | o

!
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where

I ® = —2o 1 frr e gD Rk [as s e

(1 +¢%)* ~F 4+t | .
R £A . 257, T 2,%7
J,y(R) = —=2 T IR/(1 + E9) 7[R, A/ (1 + £°)7
) (1 +.g2) LE i l__ S J
J4(R) = “““—A—‘zT I A/ (1 + 52)1/?_1(0 R/ (1 + E‘?)%q

(1 +g57 ¢ - oL ¥

) 3 ./.- B . L]

T, = —=E 1 fasa s £k [ s %]

(1 + &%) - 4t R

The ratio of the net current within the beam to the beam

current is

_ A 2 ‘ .
.1 !
Inet/Ibeam s ———2—f RAR f ag R) + sin 6.J2 (_R)]
: o o)

= 21 [a/(1 + 52)%] Kl[A/(l + gz)z] . (5.5)

For A2 >> (1 + gz), the new conditioh for current neutrali—
zation, we have

2. %
/ (1 + €7)

Ibeam ~ A

Thet (5.6)
Using the same arguments as before the current decay
length will bé the same as before, i.e. Lnrv_Az/v;
From Eg. (2.18) we can also calculate the‘perturbed

charge density. Following the same procedure used in
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calculating the current we get

-1 + pl(R) ; R <A
o' (R,0,72) = . (5.7)
pz(R) , R > A
. where
EA 2. % _‘ 2.5
o, (R) = —2——— I _IR/(1 + £7) KA/ (L + 7)) 71
1 (1 + £2) 1[ , ] 1[ ] |
B ERA 2. % ' 220k
2 ® = iy nbva s D afra st

The above expression is valid for values of 7 where the
- slow decay of the return current can be neglected. We
now see that if there were no magnetic field, i.e. £ = 0,

then the net charge density would be zero. However,

because of the magnetic field, a space charge is preseﬁtf;‘

The sin § term in Eq. (5.7) is identical to the sin 8
~term in Eg. (5.4), that is this compqnent of the cﬁrrént
: is,nothing more than thé space charge stréamingrby with
the beam velocity. The space charge electric field
generated by the qharge density provides the necessary
mechanism to transport the return current across the mag-
netic field. The electric.field generated has juétfﬁhe
proper character.to cancel out the magnétic fqrce on the

return current. If one makes the lengthy,but straight
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forward calculation of the Lorentz force on a return
current electron (see Appendix E), one finds that after
the plasma oscillations have decayed away the electron

moves in a force free region and the return current will

flow until it is diffused away by colligions,
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FIGURE CAPTIONS

Fig. 1 Schematic description of the z dependence of the
ﬁet current deﬁsity in the laboratory frame in region I"
the current oscillations are damped out én a scale length
of order V,T+ In region II the beam is current neutralized.
In region III collision have danmped out the plasma curfent
and the net current is now equal to the beam current.

Fig. 2 Schematic description of the values bf.ﬁhe ZETOS

in the complex plane . The arrows indicate the direction

the zeros move as k goes from 0 to «.
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 APPENDIX A

In this appendix the matrix elements of S(s,k) are
given for injection of the beam parallel and perpendicular
. to the static magnetic field. Since we are interested in
‘the time asymptotic sclutions, we have sét s=d,in all the
matrix elements except where it is a multiplicativé factor.

The elements of S(s,k) are then

1. ~Parallel Injection
2 Kk 24y "2 2 K, 2
-5 " 6] Z 2
511 733 7 “HR ) 5
kz Vs {1 + ic) k "k

=~

_ ~is L _ 2
512 T ¥ v (1T + 1g) k&~ [? H(Qw.ﬂ
Zz 0O b4

. -5 ‘oL 2
813 = g~ % BT
SRLIPICTIEE

k
Zz
kv
o 0 2
523 7 Mo g M8
S3p = Syl > -2
S.. = 8S..(0. » -0.)

32 23 g
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- 1 2 o | e
533 T T+ 1ey F—‘ H{G, J ‘ - (A.1)

2, _ o2,0a2 . 2 2 . 2 _ _
where H(Q) = 0 /[Q Yo kzvo {1 + lE)_], e_—‘;/kzvoT,

and

2. Perpendicular Injection

2, =2, 2 2, -2, 2
B e k_L+yo k, o ky o K,
511 7 T3 5 “H{R, ) 5
Ok v UL+ ie) k - k
Z Q
. k x 2 k. k. v (l+ie)
g _ -1ls L H (0 2) v + LY 20
12 kzvo(l + 1¢g) kz £~ ksz k, Q

1s 2 Xy =]
S,. = — H(Q, ) +
13 kzvo(l + ig) L. kki; kkL, QJ“
Sp1 T Sppla > -9y)
\ o, L 2
_ 1 k _ 2 |
I F R e a1 2[} ae, ") ,]
. k. :
Z . Ao
k_k_k '
1 Xy . 2
S, = _d H(R )
23 (1 + ie) X k 2 n
Z L
531 % Sp3(®L> -9,
S3z = Sp3 (> ~0))
2
k
= 1 - 2, °x . . ,
33 T Wy [P RO S B (2.2)
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APPENDIX B

In this appendix we give the elements necessary to
represent_x—l(s,k) as a cofactor matrix, R(s,k), divided
- v e v

by the determinant of X}sﬂk). Because our source term,
the electrostatic field from the unneutralized beam, has
only a component in the él direction, only three elements

of R(s,k) are needed and hence only these three will‘be'

given. The elements of 5(5,%) are then

1. Parallel Injection
1 K2 2 | 2, 2
Rll = 5 5 kK "(L + ie) + w_“/c”
(1 + ie)” k, P

2
o0 .
. [%2(1 + ig) + wpz/c%] - H(QFZ) —%— sz + kzz)(l_+ ig) + wpz/c%]

. k:.L W . : .
Ry, = is 2 kZ(1 + ie) + w 2/02][1—Ii(9|!2)]
kv (1 + ig)} zZ C - P '
zZ O : _ .
2
—s Yo% .
R3l - ?2—%}— ——2— kk_L r : ) (B.l) .
and
2 2
'!y_(s,Jg)‘ = st s R+ i) 4w %/ ]
= k_“e®(1 + ie) B |

N [kzz(l + ig) -— wpz/azcz]._ _ H(QHZ)- [k2 (l " lE) +U)p2/02]
-[kz2(1 + ie) - wpz/cz] - kzkzz.(l riey? (B.2)

: ;[kz(l + ig) - wpz/cz] ' ;o



and

' 2. Perpendicular Injection

9 ,
Rll = l_ k 5 E 2(l + ie) + w 2/cﬂ
(1 + ie)” k P
' . ‘ w 2 : . ‘
k%@ o+ ie) w2 —me %) B |k%ok 3y (L 4 ie) + w 2762
_ | p S C2 X | D .
. k w
R21 = — 15 7 Ei g [%2(1 + ieg) + ow 2/0%]
 k vO(l + ie) zZ C . vP
2
k. 2 w . _ :
- H(Q,z)!~5§ L+ [k2(1 + ie) + w 2/c2]
P
(kj__ C :
2 .
k k kv (1 + ie) :
y _ iz
k2 R2 on ’
w 2
R = ~ig ' p k 2
31 ; S H(R,Y) |k ok
kzvo(l + ig) C2 k, Xy
. 2 . _ 2, 2 X "z 0 : ,
i [kz (1 + ie) + mp /c] E; Q | e (B.3)
and .
_ 2 _ _ : 2
Y{s,k)| = 5 25 3 _k2(l + ig) +,mp2/c2
‘_kz c” (1 + 1ig) . o =

K [kzz(l + ie) - wp?/azd%]
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2 : 2,212 [ 2 2
[& (1 + ie) + mp /c ] [&z (1 +.1€) - mp

/uzc

!

(B.4)
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APPENDIX C

Only three elements of the matrix Q(s;k) = S(s,k)

e B(s,k),are needed, these are
= &

1.

and

2.

Parallel‘Injection

_ -3 | 2 L. ) 2, 2
Qll_ 5 3 [kz (j.+1e:) +Lup /c]

2 . 2,2 1 2 _2. 2
k7L + 1g) + w c — |k +

Z.
2 2
' k w .
L. 2 . _
- = B [k (1 + ie) + wp2/cz] -H(g, %)
k C i
z :
W 2
- ki?(l_+ ie)[k 2(1 + ie) + w 2/c€]+ p.
v. ¢
o
2 2, , 2,2
. Pk + kz Y{L + ig) + wp /c ]
~-ig kK, 5 2 ‘ 0 9
1~ 3 o KT (1 + ie) k(1 + ie) + w T/cT
kv (1 + i) z p
Z 0
. [1 - H(Qﬂ‘?)]
%31 7 ° o | @;1)

Perpendicular Injection
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2 : )
-5 2 . 2, 2
Q = [k (1 + de) + w /c]
11 kZl2vO2(l + il-:)3 Z p. ‘

o [2 . 2, 2] 1 2 )
I:k (1 + ie) + mp /c] k~————2 [k t Y, kz}

-~ — 5 E<2(1 + ie) + wpz/c%] -H (0, %)

-

2 . 2, 21[, 2 R - |
.[k (1 + ie) + w, /c:][kz (1 + 16)'+',wp /c]

_ 2 2 ' :
k w
.1 2 -2, 2| _ &= Y% 2 . 2 L 2,2
—""'"”"'2 [ky + YO kZ] "—""-2" ""'-2-"' [(k kX )(l +,lE) +. (.Up /C]
k k c
Sz _ z :
_ -is ko2, 2 . 2,2
Q21 = 3 T{—-— K91 + ie)(|k"(1 + ie) + w_"/c
kv {1 + ig) Z ' P :
Z 0O
Kk 2 .
-H(0, %) | o ks ie)[kz(l + ie)'+'mp2/c2}
k, ‘ .
41} 2 :
o B k(1 o+ ie) - k%1 o+ ie)[kz(l + i¢) + wpz/c%]
k. v (1 + ig)
. 4 O :
.
3 - -
. k. k : .V :
is X 2 i 0 2 . 2, 2
Q = H(R, )k -——Iik (1 + ie) +_w-/c]
31 kv (1 +ie) Ku i AL P

(C-.Z)V
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APPENDIX D

' In this appendix.we give a brief discussion of the
behavior of the zeros of the polyhomial in the denominator
of the integrand in Eq. (4.1) for case (b), the large

magnetic field ordering. In this ordering we have gnJeﬂl,-

a~1, and Uwvaz. The polynomial is

2
EXZ + K2)(X + iv) + X} [X(X + iv)-l/uﬂ'

- a0 + D) [(x?' +6h) (x + vy - x/uz] . D)

Figuré (2) gives a schematic description of the values of
the zeros in the complex plane. The arrows indicate the
direction the éeros move as g goes from 0 tq o,

There aré six zeros in the LHP and two zeros in the
UHP. X1 and Xo begin at the origin and move down the
negative iméginary axis aé K increases. xi_quickly_feaches
its asymptotic value of Xy ™ i\)/r;2 and Xo movés monoton—
ically down the imaginary axis to —-i® as k gqes to w. X3
and'x4 are a cohjugate pair of zeros which-begin at
t 1/0 - iv/2. BAs « increases they move in £6Wards the
imaginary axis and become pur imaginary for « =~ l/a. Cne

pole then moves down the imaginary axis to -iw and the other

‘moves up the axis reaching its asymptofic limit, -iv,

as k goes to =, X5 and X, are approximately located at .
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t /o - iv and their value does not change significantly
for all values of «x. X7 and Xg are a conjugate pair of_
. Zeros in the UHP which begin at * a/z + iuaz/cz. As «
increases they move towérds the positive imaginary axis
‘and become pure imaginary for « = a/f. They then both
move up the imaginafy axis, one more slowly at first
than the other, towards +i® as Kk goes to .

| The zeios of (D.1) have been calculatéd'using ex—
‘pansions in the parameters cfl and v for all values of
. These expresgsions are not uniformly valid for ail_K
since the character of the coﬁjugate pair zefos changé
dramatically when they come near the imaginary axis. At
these two values of «, k¥ = 0/g and K =~ 1/0, the expénsions
fail. One can reorder the terms in the polynomial at
these singular points and calculate the values of the
zeros. One then obtains a complete picture of the be-
havior of the.zeros. This has been done but wé will not
give any expressions heré since no insight is‘gained froﬁ

this presentation.
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APPE-.NDIX E

| In this appendix we will calcuiate the ﬁy component
of the Lorentz force on the plasma electrons in the lab-
oratory frame, i.e. Ey' + véon/c’ in order to show that -
the space charge electric field does indeed cancel the
magnetic force on the return current electrons. First
consider the perturbed velocity, v_'. The solution to

z
Eg. (2.6) may be written as follows,

v(s,k) = - Cls,k)*E(s,k) -, .

m_ s
YOO

where the elements of C(s,k) are

2 -2, 2 2 -2, 2
o= is Ky Y Ry CH (R 2) ky g, Tk,
11l kzvo(l 4+ ig) k2 L k2
-1 kL 2 1 k 2 kzvo ky
Cig = = = == + H(Q,) : + i 4
12 (L + ie) Kk, L (1 + 1ie) k k Q, k;
C = H(Q 2) 1 kxky 4+ %2¥o kx Z
13 L |TT + 1) Kk, T Y o, kk,
k_k k 2k k k kv
o = -is 8 2 7z l‘QH(Q 2) y "z _ 1 z L ;20
21 kzvo(l + ig) o k2 1 kzkl“ Y02 k2 Q,
k (1 + ie
. y( )
ki
X :
c.., = 1 - H(2,%) = Sy _i‘ky‘_f.o
22 1 + 1e L (I + 1<) X 2 Q
4

23

0

Il

s
o]

|-
[\
=
'..J
o
. ~
=

3]

1

1..-.‘
oy

[

<

o
iF‘T
b
—
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, k k kv kk (1 + i)
c _ ig __H(n 2) XYy _: Z0 X2z
31 kzvo(l + 1ig) 1 kk, 9, kk } :
c = - H(Q 2) 1 . kkxky
32 L (1 + 1ig) 2
. k kL
=L
2
k
-+ 2 1 v
C33 = w1y - RO (T I 3
R

The perturbed velocity in the éz direction is given by

e

k

z - v, (s,k) : | ' {E.2)

v, (s,k) = = v, (s,k) +

2Tk k

After substituting Eg. (E.1) into Eqg. (E.2) the expression

for the perturbed velocity becomes

k

- _ lim -e ' is z

Vz(t+ k) = s+0 vy m_ Yk v (I + 1ig) k_

_ o0 Z O

kv k (1 + ie) o .
. ‘ -2_ 2 -2 . 2 0y - :

(Yo H{Q, )FQJ _+ i o " ] El(sﬂﬁ) (E,3)_

: k v kv k : :

. 2 vy ok . 2 X 0 'z .

+ i H(Q__L ) v K Ez(S’..]S«) + 1 H(QJ_ ) —Q? k_i_ E3(Sr.'}$') "

Using Eq. (2.10) to evaluate E, (s,k), Ez(scﬁi and E3(s,§g

1 ¢
in Eg. (E.3) we have

2 Loy 2,2
Bopb(k) [k (1 + 15)_+ wp /c ]
2 JX(s K] (1 + ie)

Ane 52
v (tre,k) = —
' Yoo Q5

| . X0
: H(Ql?)[gzzml + ie) + wp2/c2 +i X ¢] . (E.4)
| N .
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The above expression is for the perturbed velocity in the

beam frame. In the laboratory frame we have
v '(s,k) = v _“v_(s,k) o | (E.5).

The magnetic force then becomes

- 2 : 2,2
. (e, k)B. Jo = 4ng? o Py, (k) [k (1 +.1e) + wy, /¢ ]
Z ' Txo c Q, fi(s,kn (1 + ie)
2.1 2 2, 2 k8 |
L LI D R . (E.6)
. (@] . .

In the laboratory frame the éy component of the electric

field is given by

. B _ _
E ' (s,k) = v, [Ey(s,jg) BOBX(s,_lg)]_ . (E.7)
The ay component of the electric field in the beam frame

is given by

sk .

s _ lim Pty - - | '
Ey(t+ r‘]“{\) - s} El(s’m}g) P ) (E.S)

and. the 4  component of the magnetic field by

. k. k _ ,
_ lim . X'z -
BX(t%w,E) = 550 S[ KK B,y(s,k) + 133(:_3_,‘35‘)] - (3.9)

e
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Using Eg. (2.1) to evaluate Bz(s,g)'and B3(si5) in terms

of Ez(stﬁ) and E3(s,5) we have

B_ (t+«=,k) = Lim ~ic EXE E,{s,k) + kaZ‘E (s,k) (E.10) -
X o S_’O 1 k—L 2 e k_L 3 "w" ’ T

Substituting Eqs. (E.8) and (E.10) into Eq. (E.7), and

using Eg. (2.10) to evaluate the electric field, Eq. (E.7)

becomes
E_!"(t»e,k) =
y (t>e,k)
2 . 2,2
dns E»pb(k) K°(l + ie) + w_"/c ] . 2)
¢ WJL(EK) T+ Tey -
k Q. k v N
N PR 2,2 . 2 "yo., 2 C oy 2
[l v % /e =iyt gk (T4 ie)T o (B

Adding Egs.(E.6) and (E.1ll), the expression.for the Lorentz’

force becomes

2 p, (k) 'E{z.(l + ig) + oW 2/02]-' |
i '(k) + v '(k)B /C = 4ns g.. b - ; P
y w0 Yz W Txo e Q| ¥ (s,k) (1l + die) .
' k v '
. 241, Ty o 2. 2 . L2 2,4 .
H(QL-)[L 0L Yo kz (1 + ie) .+ kZ ‘l + 1sﬂ . (E-lZ},

Taking the inverse Fourier transform and uéing_Eqs. (2.15)

. and (B.4) to evaluate p,_(k) and |¥(s,k)| we get
b "= 7 = o : ‘
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' 1 — . dic
By (x) + v, X)B_ /¢ = 41T_eYONbAf2T[ J (KA)
- A
2T o) +co

. /. ag: [:ucR cos (f - 9)] az [ ax exp,[—i'(f + Z)x]
J .

|
8
1
8

2. 2. . .. .2 B .
X[ HeT)Y (x+iv) 4+ x] [dk (x+iv) sinff + —- X (x+iv)

N 2. | 2
]:(x2+f<2)(x+iv) + x] [X(X"'iv) - l/uz} __%_ x (% +e?)

a-

_ 2 , -1
. EX2+K2)(x+iv) + x] + g-71-'r<2()(2'+|<2) coszﬁ( R (E.13)
. o . - ,

As before,_all variables have been normalized to KE = e/wp,
Neglecting the 0(q-4) term in the denominetor of the in--
tegrand and the 0(a ) term in the numerator of the integrand,

Egq. (E. 13) reduces to

. o L ag
EY (x) + V,z (a%)Box/c = —4mey N, A f Jq (k A)f elnﬂ
_ : _ o

o

- exXp [iKR cos (g - 6)] fd'ff dyx e}'{pli-i('ﬁ‘ -+-Z))(]

-0

- . Loy 2 ' -
, : ixk (x+iv) . - - . (E.14)
EX2+K2)(X+iv) +x[x(x+iv) = 1/@%]— éifX{X2+K2).

o
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Doing the x and 7 integrations as before, we have

' ' - 2.2 .
E (g) + vz (§)BOX/C = 4ﬂeyON Ag"v™ sin ©

Y b

j’ <dk 3, (kA) T (cR) expl}vZf(Kz)]
' (|<2+l)3 P.+ ng(mzﬂ o ’

(E.15)
Q

where the above is valid for %2 > 1/v. We now see that in
this region the Lorentz force term is order azvz. Since the
momentum relaxation time in the laboratory frame is

T' = T/YO, then av = l/mpT' = v“coll./wp, and the force

on the return current electrons is negligible.
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